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LE'ITEW TO THE EDITOR 

Control of the quantum path-target state distance: 
bistable-like characteristic in a small tight-binding system 

C Joachimt 
IBM T J Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA 

Received 3 August 1987 

Abstract. The control of the distance between the quantum path and a given target state 
in the state space of an ( N  + 2 )  tight-binding isolated system prepared in a non-stationary 
initial state is studied as a function of an asymmetry introduced by a change in only one 
of the coupling constants. When N > 6 ,  a bistable-like characteristic is found for the 
variation of the minimum distance between the path and the target as a function of this 
asymmetry. Optimised systems are proposed to reach the best control of this distance by 
the asymmetry. 

Let e be the state space (Davis 1976) of a quantum system modelled by a Hamiltonian 
H ( 8 )  with 8 one of the control parameters of this system. The path p ( f ) ,  i.e. the 
density operator of the system belonging to E ,  is governed by the von Neumann- 
Liouville equation (Zwanzig 1964, Bratteli and Robinson 1979). If a target state p is 
chosen in E ,  a change in 8 may induce, for the same initial state p ( O ) ,  a p(  t )  deformation 
such that the Euclidean distance d ( t )  between p ( f )  and p increases. 

For non-dissipative systems, i.e. when p ( t )  runs only on the extreme point subset 
of E ,  one example is a three-level isolated tight-binding system (figure 1 with N = 1)  

. .  . .- . - - a  . .  . 

Figure 1. Structure of the N + 2  tight-binding system studied in this letter. The coupled 
levels are linked by a point line and the amplitude is labelled on each line. As in the text 
the energy of the I$,) ,=, ,? is e. 
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- I  with p ( 0 )  = ~sI)(sllr P = )s2>(sz) and (sI 1 sz) = 0, (s, I p,> = 0. Only pa = 1 may lead to 
d (  t )  = 0 (Joachim and  Launay 1987). For large and  small pa-’, the minimjm distance 
between p ( t )  and p increases to reach the maximum possible distance J 2  due to the 
convex structure of E.  

In this letter, we show that a bistable-like characteristic can be obtained with the 
( N  + 2)-level tight-binding system (figure 1)  if N > 1 and if optimised au-’ are chosen. 
For these au-’ and when pa-’ scans the [0, 1 3  interval, the maximum possible distance 
between p ( t )  and Isz)(szl is close to zero for large N. When pa- ’> 1, this distance 
increases. Compared to the three-level system ( N  = 1 in figure l) ,  the path is stabilised 
for pa-’ E [0, 11 because an  N increase shadows the perturbation introduced by the 
coupling p when p # a. 

For the purposes of this letter, the ( N  +2)-level system is considered isolated from 
its surrounding environment. Clearly for bounded quantum systems, the dissipative 
case is richer in the types of quantum path than is the non-dissipative case (see e.g. 
Obermayer er a1 1987) since the Hamiltonian spectrum is no longer discrete, which 
may lead to chaotic behaviour (Casati and Guarneri 1984, Jose 1986). But isolated 
quantum systems also lead to interesting paths because they are only controllable in 
part (Wolovich 1974), i.e. for a given p ( O ) ,  p ( t )  cannot reach all the extreme points 
of E even if 0 runs over all the control space parameter. Transitions from periodic to 
almost-periodic paths can dramatically affect d (  t )  or the speed to go (if  possible) from 
p ( 0 )  to the vicinity of p. Hereafter, Isl)(sl/ is the initial state p ( 0 )  and Isz)(s21 the target 
state p .  

It may seem worthless to search for bistable-like characteristics in tight-binding 
systems more complex than a two-level system since it is well known from the Rabi 
formula (Rabi 1937, Sukurai 1985) that a two-level system presents such a characteristic. 
However, firstly, a two-level system has only one control parameter ( the  ratio between 
the coupling and the energy difference of the two levels) and one time-scaling parameter 
(this two-level energy difference). Then there are not enough control parameters to 
fully optimise the slope of its characteristic. Secondly, if this two-level system is 
embedded in a periodic tight-binding chain, the control parameter cannot be used to 
control the low voltage conductance of the overall system as for the N = 3 system 
(figure 1 )  (Sautet and Joachim 1987) since the site energy of half the periodic chain 
has to change in this case. 

When the tight-binding system (figure 1) is not coupled to its environment, p ( t )  = 

/ $ ( t ) ) ( $ ( t ) l ,  d ( t )  = ~ 2 - 2 ~ ( s 2 ~ $ ( r ) ) ) 2 ) 1 ”  and I $ ( r ) )  is a solution of the Schrodinger 
equation [ih a l a r  - H ( N ) ]  1 $ ( r ) )  = 0 where H (  N )  is the Hamiltonian of the system in 
figure 1 given on the tight-binding basis Isl), / ( P / ) , = ~ . ~  and Isz) by 

H (  N )  = 

‘ e  a a . . .  a a 0  
a e + u  0 . . . 0 O a  
a 0 e + a  0 . . O a  

0 . . .  
. . .  
. . .  0 

a 0  . . 0 e + a  0 a 
a 0  0 . . . 0 e + u p  

. o  a a . . .  a p e 
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on this tight-binding basis are solutions of the system: 

for all j from j = 1 to j = N - 1 ,  and 

where, as usual, the Schrodinger equation has been projected on the preferred tight- 
binding basis used for ( 1 ) .  

From its definition, the evaluation of d (  t )  requires only the calculation of lg2( r)12 
from ( 2 ) .  But the Laplace transforms of f , ( t ) , = l , N  in ( 2 )  are readily expanded from 
(2b)  and (2c) as a function of the g , ( t ) , , l . 2  Laplace transform because there is no 
coupling between the Then ( 2 a )  and (2d) can be transformed in a two- 
equation system with only two unknown functions g , (  r )  and gz( t ) .  After some lengthy 
expansion, the solution of this simplified system gives for Ig2( r)12: 

with X =pa- ’  the asymmetry parameter and w ,  =(a /2h) ( l -4YJa2)”2 .  The para- 
meter Y ,  in (3) is given by 

(4) Y,=fa2(-[(2N - l ) +  X2]*{[(2N - 1)+X2]’-4(  N - 1 ) ( 1 -  X)’}”’) 

and the time-independent envelope by: 

4 ( N  - 1 + X ) ’  
( 2 N  - 1 + X2)*-4(  N - 1 ) ( 1 -  X ) ”  S N ( X )  = 

Notice that for all N, the (N+Z)-level system is characterised by the same control 
parameter a-’ ,  pa-’ and the same scaling parameter a. 

As already discussed for N = 1 (Joachim and Launay 1987), the first interesting 
feature in such a system is the cua - I  values which lead for X = 1 to d (  t )  = 0; here we 
find 

for p EN, m EN, p a  m + 1 and p f 2 m +  1 .  
These ‘resonant’ au-’ correspond to periodic p (  t )  paths in E .  They come from the 

solution of the equation d (  t , ,) = 0 where t p  is the position of one of the Igz( ( ) I 2  extremum 
in time and  the unknown in this equation is aa-I .  
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One consequence of the l/Jx law in (6) is the size reduction of the interval where 
the Zr( m, p )  are found. When N goes to infinity, the only resonant C Y U - ’  &zero, i.e. 
all the Iqj) levels degenerate with IsI) and Isz). Another consequence is the J N  increase 
of the speed for the path p ( t )  to go from /sl)(s,l to Is2)(s21 because for a given ( m , p )  
in (6), its first time passage at Is2)(s21 is given from (3) by: 

27ih 
a ( 1 + 8 N Z f ( m , p ) ) ” ’  

t =  (7 )  

For an almost-periodic function like (3) with X = 1, the existence of the Zr(m, p )  
implies that there also exists au-l leading to destructive interferences, i.e. antiresonant 
combination of sinusoidals in (3). For a given m in (6), these aa-’ must correspond 
to the d( t , , )  cusp points because the passage from one Z,(m,p)  to another comes from 
a change in p .  Each change is a discontinuous process leading to a cusp point between 
two consecutive Zr( m, p )  for the same m. By the same calculation as for N = 1 (Joachim 
and Lanuay 1987), it is found for the antiresonant au-l that 

Zar(m, p )  = (&)I”[ ( 2 p +  1 ) 2 -  1 1  I /*  

2p-4m-1  

with PEN, m E N  and p 2 m S - l .  
If one tunes CY and a to go from a resonant to an  antiresonant C Y U - ’ ,  then min,[d( r,)] 

may increase during this change if t, is the time position of the d (  t )  minimum number 
j .  But for antiresonant C Y U - ’ ,  min,[d(t,)] is not so large because d(r,) is given from 
(3) and (8)  by 

Then, min,[d(t,)] is independent of N and goes to zero when Z,(m,p)  decreases 
because such a decrease is given in (7)  by an  increase of m which pushes the d( r , )  
minimum to higher j .  For example, for Zdr(m, m + 1) the smallest minimum between 
all the d(r , )  minima is the one number j = m / 2 +  1 for odd m and j = f ( m  + 11+ 1 for 
even m. Even foc the  worst non-resonant a&’, i.e. Z,,(O, 1 ) .  min,[d(t,)] = $ ~ ’ 2  which 
is still far from J2. 

The main interesting feature, however, is the control of d ( t )  by the asymmetry 
parameter X when the ( N  +2)-level system is set up  in a resonant evolution regime 
to be sure that p ( t )  coming from Isl)(sll pass through ls2)(s21 for X = 1. 

Let us first focus on the time-independent envelope term S , ( X )  of (3). When N 
increases, S , ( X )  is stabilised on the X interval [0, 13 (figure 2) .  For small p, the 
perturbation introduced in the overall system by the state /(P,) (weakly coupled to Is2) 
and coupled to Isl)) is shadowed when the number of /(P,),=~, , states symmetrically 
coupled on both sides is large (figure 3). When X > 1 ,  S , ( X )  goes down but the slope 
of this variation becomes small as N increases. More interestingly, the minimum 
distance between p ( t )  and ls2)(s21, calculated with only S , ( X ) ,  decreases at X = 0 
faster than the slope of S N ( X )  for X > 1 as a function of N (figure 3). Then, already 
for N = 6 a bistable-like control law is obtained by scanning X ,  for example by slowly 
changing p for a fixed optimised a corresponding to a resonant aa-l  in (6). 

However, to obtain the exact ability of X to control d ( t ) ,  the influence of the 
time-dependent part h ( t )  = ( g 2 ( t ) ( ’ / S , ( X )  of (3) must be taken into account because 
for a given Z J m ,  p )  and X Z 1 not all the X lead to a periodic p ( t )  path. After the 
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Figure 2. Variation of the time-independent envelope S , ( X )  of Ig,(t)12 as a function of 
the asymmetry parameter X = Pa-' for N s 6. 
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Figure 3. Variation of the minimum distance at X = 0 and of the slope of d ( X )  as a 
function of N .  The distance d ( X  =0)  and the angle @ are calculated from the S , ( X )  
envelope. @ is the angle between the d ( X )  ordinate axis and the line tangent to d ( X )  
slope for X > 1 near its inflection point. 
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derivative of (3) ,  the equation obtained to calculate the position of the d (  t )  extremum 
in time is given by 

( Y _ / w - )  s in(w_t) - (  Y+/o+) sin(w+r) = O .  (10) 

Unfortunately when p a - ’ #  1, this equation which leads to the resonant and anti- 
resonant X is not analytically solvable for N > 1 as it was for N = 1 (Sautet and  
Joachim 1987), i.e. the deformations of S N ( X )  due to the time-dependent part h ( t )  
of (3)  cannot be found analytically. The numerical solution of (10) shows that for 
N > 1, these deformations are negligible as soon as Z,( m, p )  is chosen small compared 
to the first resonant aa-’ available, i.e. Z,(O, 1) for the N considered. This comes 
from the fact that the (N+2)- leve l  system evolution reduces to a two-level-like 
evolution for large a and X = 1 because in this case the Fourier spectrum of lgz(f)12 
is close, aside from the w = 0 pulsation component, to that of a sinusoidal at a pulsation 
w =(a/2h)[l-(1+8NZf(m,p))”2]. 

The deformations of S,(X) by h ( t )  are presented in figure 4 ( a )  for N = 2  as a 
function of the Z,(O,p) chosen. They are calculated from the maximum possible 
amplitude reached by h ( t )  during a time interval which contains at least more than 
one of its maxima. For figure 4(a) (and also figure 4(b)) ,  the time interval chosen 
contains the first ten h (  t )  maxima which corresponds approximately to the first almost 
period of h ( t ) .  When this interval is extended to infinity, the width of each peak in 
figures 4(a) and 4(b)  decreases because h ( r )  is an almost-periodic function, i.e. it is 
always possible on a large time interval to find a h ( t )  maximum as close as desired 
to one. In  this case, in figure 4(a) ,  the 1 -max,[h(f,)] function of X tends to be a 
sum of delta functions. The support of each of these delta functions defines an 
antiresonant X .  

0 2  

0 

6 

1 2 3 
k 

(a1  ( 6 1  

Figure 4. Variation of 1 -max , [h ( r , ) ]  a s  a function of X for the first ten h ( r :  maxima in 
t ime with ( a )  N = 2 fixed and  ( b )  ZJO, 1 )  fixed. 

In figure 4 ( b ) ,  the deformations induced by h ( f )  on S , ( X )  are presented as a 
function of N for Z,(O, 1 )  at each N. When N increases, h ( t ) o t  
1 - c o s ( w ~ t ) [ 2 c o s ( w + r ) - c o s ( w ~ r ) ]  with, in this case and from (4), w -  > > U + .  Even if 
w -  and w+ are still incommensurable for X # 1 ,  w +  will play a role in lgz(t)12 only on 
a very long timescale. Then for large N, the antiresonant X peaks are small in 
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amplitude. They are pushed to zero for X < 1 and to infinity for X > 1. The deforma- 
tions of S , ( X )  by h ( t )  can be neglected as soon as N > 5 even for Z,(O, 1). 

In conclusion, it is possible to design a simple quantum system which shows a 
bistable-like characteristic in controlling, by a small coupling asymmetry, the minimum 
distance available in time between the path of this system and a given target state in 
the state space. Contrary to a two-level system, the asymmetry control parameter used 
to control the path for the isolated case can also be used, in principle, for the control 
of the low voltage conductance of a periodic chain when the N + 2  system presented 
in this letter is embedded in it. Whether or not this control will lead to a bistable-like 
characteristic for the overall system conductance is currently under investigation. 

When N increases, one limitation of the N + 2 system is the reduction of the interval 
where resonance aa- '  can be chosen to provide a zero minimum distance between the 
path and the target state when there is no asymmetry in the system. An optimisation 
between N and aa-' is needed if small Z,( m, p )  cannot be reached for the system 
considered. 
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